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SUMMARY
Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and ma-
rine ecosystems.1,2 Considering the unprecedented loss of coral cover and associated reef ecosystem ser-
vices, active coral restoration is gaining traction in local management strategies and has recently seen major
increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly un-
derstood.3,4 Carbonate budgets, defined as the balance between calcium carbonate production and erosion,
influence a reef’s ability to provide important geo-ecological functions including structural complexity, reef
framework production, and vertical accretion.5 Here we present the first assessment of reef carbonate
budget trajectories at restoration sites. The study was conducted at one of the world’s largest coral restora-
tion programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate
degraded rubble fields.6 Within 4 years, fast coral growth supports a rapid recovery of coral cover (from
17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from
7.2 ± 1.6 to 20.7 ± 2.2 kg m�2 yr�1). Four years after coral transplantation, net carbonate budgets have tripled
and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kgm�2 yr�1, respectively). How-
ever, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the
preferential use of branching corals for transplantation. While longer observation times are necessary to
observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we
demonstrate the potential of large-scale, well-managed coral restoration projects to recover important
ecosystem functions within only 4 years.
RESULTS

The Society for Ecological Restoration (SER) defines ‘‘restoration’’

as any activity undertaken to assist recovery of a degraded

ecosystem, with the goal of achieving substantial ecosystem re-

covery relative to an appropriate reference model.1 This study

aimed to assess the extent to which coral reef restoration sites

can recover native reef communities and geo-ecological functions

(e.g., structural complexity, carbonateproduction, andvertical reef

accretion). It was conducted at the Mars Coral Reef Restoration

Program in South Sulawesi, Indonesia (www.buildingcoral.com),

one of the largest reef restoration projectsworldwide.7 The project

uses coral transplantation and substrate addition—the world’s

most widely used coral restoration methods3,4—in attempts to

restore reefs that were damaged by blast fishing 30–40 years

ago. Despite the high availability of coral larvae,8 these degraded

areas have shown no signs of recovery due to the dominance of

mobile rubble, which inhibits coral juvenile survival.9 A continuous
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network of interconnected ‘‘Reef Stars’’ (hexagonal sand-coated

steel structures) consolidates mobile rubble and provides a

three-dimensional structure for out-planting locally sourced coral

fragments.6,10 In time, restoration sites are expected to recover

the structure and functions of nearby undisturbed reefs through

natural ecological processes (i.e., coral growth and coral recruit-

ment). However, the time frames over which full recovery can

takeplaceareunclear. Toquantify themagnitudeand recovery tra-

jectory of reef carbonate budgets at reef restoration sites, we con-

ducted ReefBudget surveys11 (https://geography.exeter.ac.uk/

reefbudget/) on 12 sites thatwere restoreda fewmonths to4 years

ago (space-for-time substitution), as well as on 3 degraded and 3

healthy reefs that were used as reference sites (Figure 1).

Coral restoration recovers reef carbonate budgets
within 4 years
Transplantation of coral fragments inherently results in immedi-

ate increases in coral cover (5-fold), structural complexity
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Figure 1. Location of study sites

(A) Pulau Bontosua in the Spermonde Archipelago, South Sulawesi, Indonesia (adapted from Smith et al.6).

(B) Reef star installation on Salisi Besar.

(C and D) (C) Most restoration sites are located on Salisi Besar, (D) while some mature restoration and healthy control sites are located slightly further away (max

1 km distance). Restoration status of sites is color coded (degraded, 0-, 1-, 2-, and 4-year post-transplantation, healthy) and the star indicates the location of coral

growth measurements (see Figure S3).

Satellite imagery from Google Earth Pro V 7.3.2.5776 (28 July 2023); Image: 2023 CNES/Airbus. Photo in (B): Indo-Pacific Films.
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(1.2-fold), coral colony abundance (7-fold), and gross carbonate

production (10-fold) at restoration sites compared to degraded

control areas (Figures 2A–2D). Four years after coral transplanta-

tion, coral cover, average colony size, and carbonate production

rates have tripled, and restoration sites are indistinguishable

from proximal healthy reefs in all investigated parameters (Fig-

ure 2; Table S1). Four-year-old restoration sites are therefore

referred to as ‘‘mature’’ throughout the rest of the paper. Net

reef carbonate budgets change from net negative at degraded

sites to net positive directly after coral transplantation, triple

over the next 4 years, and reach levels equivalent to those quan-

tified for proximal healthy reefs (Figure 2F). These changes are

driven almost entirely by gross carbonate production increases,

because gross erosion rates do not differ across sites (Figure 2E).

Vertical potential accretion rates calculated from carbonate

budget data are 18.0 ± 0.5 mm yr�1 at mature restoration sites

(branching coral dominated) and 13.8 ± 0.77 mm yr�1 at healthy

reefs (mixed species composition).

Coral community compositions on restoration sites and
healthy reefs differ
Although gross carbonate production rates at mature restora-

tion sites and healthy reefs are similar, the community compo-

sition and therefore coral genera contributions to total coral

carbonate production differ. Due to their high cover and fast

growth, Acropora (arborescent, corymbose, and tabular) domi-

nate carbonate production at all sites (81% directly after trans-

plantation, 53%–54% after 1–4 years and at healthy sites).

Restoration sites additionally have high contributions by

branching Pocillopora (8%–17%) and Stylophora (13%–26%),

but low abundances of other morphotypes. Conversely, on
1342 Current Biology 34, 1341–1348, March 25, 2024
healthy reefs 33% of carbonate production derives from sub-

massive, massive, encrusting, plating, and solitary morpho-

types, including Isopora (12%), Porites (5%), and other massive

corals (7%) (Figure 3A). On a community level, magnitudes and

contributions to total carbonate production differ significantly

between restoration sites and healthy reefs (PERMANOVA

F4,55 = 8.78, p = 0.001; pairwise Adonis: padj < 0.05). Reefs

0-, 1-, and 2-years post-transplantation are dominated by

branching Stylophora, Acropora, and Pocillopora, whereas

healthy reefs are characterized by high carbonate production

from a wider range of coral genera and morphologies and vari-

ability within and among sites is larger (Figure 3B). Mature

restoration sites overlap with both healthy and more recently

restored sites, reflecting their overall high total coral carbonate

production but different genera contributions compared to

healthy reefs. Similar patterns are visible in the benthic commu-

nity composition, suggesting a gradual, yet still incomplete,

succession toward healthy reef communities (Figure S1A).

Coral genera diversity and evenness, however, are not signifi-

cantly different between healthy reefs and mature restoration

sites (Figures S2B and S2C).

Carbonate production is driven by the abundance and size of

coral colonies. Size-frequency distributions of different morpho-

types show that recently restored sites are characterized by high

abundances of small Acropora colonies and other branching

corals, whereas colonies at mature restoration sites and healthy

reefs are generally larger (Figures 4 and S2) and therefore pro-

duce more calcium carbonate. Healthy reefs are furthermore

characterized by high abundances of massive, encrusting, and

other morphotypes, which are comparatively rare at all restora-

tion sites (Figure 4).



Figure 2. Recovery of coral restoration sites

Comparison of (A) coral cover, (B) substrate rugosity, (C) colony abundance, (D) gross carbonate production, (E) gross carbonate erosion, and (F) net carbonate

budgets on degraded reefs, restoration sites (0-, 1-, 2-, and 4-year post-transplantation) and healthy reefs. Boxplots depict median values, 25th/75th percentiles

(box), 5th/95th percentiles (whiskers), and outliers (points) of transect-level data. Empty circles represent mean values at site level (n = 3 per group). Different letters

in gray boxes signify significant differences between groups, derived from linear mixed-effect models with restoration ‘‘status’’ as fixed and ‘‘site’’ as random

factors (results in Table S1) and Tukey post hoc tests. The bottom row depicts representative photographs of surveyed restoration sites as well as degraded and

healthy controls.
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DISCUSSION

Coral restoration supports high reef framework
production
Net carbonate budgets of mature restoration sites in our study

(20.6 ± 0.6 kg m�2 yr�1) are among the highest rates reported

for reefs globally (mean ± SE: 3.3 ± 0.2 kg m�2 yr�1, range:

�7.4�19.9 kg m�2 yr�1; summarized in Lange et al.12). The

fact that these match net budgets on nearby healthy reefs indi-

cates that this is not an artifact of the restoration, but rather

shows that restoration can drive rapid recovery of carbonate

production. The comparatively high net carbonate budgets are

a function of high coral cover and fast coral growth rates, as

well as low rates of bioerosion at the study sites. Coral cover
at mature restoration sites (56% ± 3%) and healthy control sites

(63%± 3%) is relatively high compared to reefs situated closer to

the Sulawesi mainland (range: �10%–50%8,13,14) and other

Indo-Pacific reefs (mean ± SE: 22.1% ± 0.7%15). However,

much of the coral carbonate production is not driven by high

coral cover, but by high local growth rates. Fast coral growth in

the Spermonde Archipelago (Figure S3), and Indonesia in gen-

eral,13,16,17 is most likely facilitated by favorable local conditions

in temperature, light, and water quality.18 We found especially

high growth rates for corymbose Acropora (12.0 ± 2.2 cm

yr�1), which dominate both restored and healthy reef commu-

nities and provide critical habitat complexity due to their table-

like morphology. The calculated low rates of bioerosion reflect

a low biomass of parrotfishes on both restoration sites (110 ± 4
Current Biology 34, 1341–1348, March 25, 2024 1343



Figure 3. Coral genera carbonate production

(A) Contributions to total carbonate production by coral genera and morphotype (yellows: Acroporids; reds: Pocilloporids and other branching corals; blues:

massive and submassive corals; purples: encrusting, plating, and solitary corals).

(B) (Dis)similarities in coral carbonate production between sites projected onto a two-dimensional space using principal component analysis (PCA). Sites are

colored according to restoration status (degraded, 0-, 1-, 2-, and 4-year post-transplantation, healthy) and vectors represent coral genera significantly driving the

displayed differences between sites (at p < 0.05). For differences in benthic community composition and coral genera diversity see Figure S1.

Abbreviations: ACRA, Acropora arborescent: ACRO, Acropora corymbose: ACRT, Acropora table; HCB, Other branching; POCB, Pocillopora branching; STYB,

Stylophora branching; SERB, Seriatopora branching; PORB, Porites branching; PORM, Porites massive; ISOS; Isopora submassive; HCM, Other (sub)massive

hard coral; HCE, hard coral encrusting; HCP, hard coral plating; FUN, Fungia and other solitary taxa; Other, foliose/columnar morphotypes.
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to 186 ± 50 kg ha�1) and healthy reefs (243 ± 29 kg ha�1), caused

by high fishing pressure across the Spermonde Archipelago.19

Parrotfishes are key agents of reef erosion in most regions,20

as they scrape or excavate the reef surface in search of micro-

scopic algae and cyanobacteria.21 Besides acting as bioeroders,

parrotfishes also remove turf algae, clear substrate for new coral

recruitment, and contribute to sediment production and trans-

port.22 The small number and body size of parrotfish at the study

sites therefore does not aid overall ecosystem resilience despite

promoting high net carbonate budgets.22 Sea urchins, which can

also be locally important drivers of bioerosion,23,24 are rare

across both restoration sites (0.03 ± 0.02 ind. m�2) and healthy

reefs (0.14 ± 0.13 ind. m�2) and contribute little to gross erosion

rates. Due to overall low bioerosion and low contributions by

crustose coralline algae, the net carbonate budgets at the study

sites thus almost entirely reflect coral carbonate production.

Coral restoration leads to differences in coral
communities
Despite slightly lower coral cover, coral carbonate production

rates on mature restoration sites exceed those at some healthy

sites due to the higher percentage of fast-growing Acropora,

Pocillopora, and Stylophora. The preferential use of branching

coral genera in restorationprograms is acommonpracticeworld-

wide.3 Apart from the logistical advantages (easy fragmentation

and attachment to substrates), fast-growing branching corals

provide the most immediate gains in terms of coral cover, struc-

tural complexity, and carbonate production. On the other hand,

the resulting reef may be less diverse in terms of biodiversity

and habitat provision compared to natural reefs, which harbor

more massive corals and large-scale framework structures. A
1344 Current Biology 34, 1341–1348, March 25, 2024
fundamental goal of reef restoration is thus to create ecological

conditions that will foster subsequent natural coral recruitment

and recovery (i.e., self-organization ability) by providing suitable

substrate and seeding stocks.4 However, the timescales over

which this may happen on restoration sites (and whether it will

happen) remain unclear. What our data show is that at least in

the first 4 years post-transplantation, recovery of coral cover

and carbonate production was driven almost exclusively by the

growth of transplanted coral fragments instead of natural recruit-

ment; this is demonstrated by the fast and continuous increase in

colony size (Figure S2) but limited increase in colony abundance

(Figure 2) and species diversity (Figure S1). This means that

although certain reef functions have been recovered at restora-

tion sites, full recovery of reef communities and ecological func-

tioning has not yet been achieved. Although colony sizes at

mature restoration sites suggest fecundity of transplanted corals

and a previous study found natural recruitment on and below

Reef Stars on the neighboring island (Pulau Badi),10 we observed

little new recruitment to Reef Stars in this study (although no tar-

getedobservationswere conducted). Reef Starsmay not provide

the best substrate for new settlers as they are quickly overgrown

by turf algae and cyanobacteria. Crustose coralline algae, which

often induce coral settlement,25 were not observed onReef Stars

(0% cover on reefs 0–2 years post-transplantation), and even on

healthy reefs the occurrence is very low (5.8% ± 1.3%). What we

did observe, however, is that the space below Reef Stars at

mature restoration sites has partly infilledwith consolidated coral

rubble, which may provide suitable hard substrate for natural

recruitment in the near future. In any case, restoration sites may

serve as seeding sites for adjacent degraded areas, so investi-

gating the reproductive status of transplanted corals is



Figure 4. Coral colony size distribution

Size-frequency plots of coral colonies at degraded reefs, restoration sites (0-, 1-, 2-, and 4-year post-transplantation), and healthy reefs. Genera are grouped into

dominant morphotypes (arborescent Acropora, corymbose/tabular Acropora, other branching taxa, massive/submassive taxa, encrusting/plating taxa, and

other morphotypes). X axes were log10-transformed to better display frequencies across the whole size range.

For comparison of average colony sizes and skewness of colony size distributions see Figure S2.
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suggested as a priority for future work. As the Mars restoration

program is committed to full ecosystem restoration,6 the project

is now incorporating additional substrates (e.g., concrete struc-

tures) and coral genera (e.g., slow-growing massive corals) to

restore the native community composition.

Coral restoration supports vertical reef accretion
A major question surrounding all restoration efforts relates to

their ability to translate increasing carbonate production rates

into sustained vertical reef accretion, which is critical for enabling

reefs to track rising sea levels. Sea-level rise (SLR) and storm

waves increase the risk of coastal flooding, which poses a signif-

icant threat to coastal communities and is exacerbated by

climate change.26 This is of particular concern in East and South-

east Asia, where coastlines support 71% of the global coastal

population within 10 m elevation above sea level, and where

future relative SLR may be exceptionally high due to human-

induced subsidence (>20 mm yr�1 27). Coral reefs serve as nat-

ural breakwaters by reducing wave energy reaching the coast by

up to 97%,28 a service that is threatened by ongoing and pro-

jected future reef decline.29 One desired outcome of reef resto-

ration should therefore be to support vertical reef framework ac-

cretion in order to enhance coastal protection.30,31 Two recent

modeling studies have explored this question for northern
Caribbean reefs. In the US Virgin Islands, transplantation of

Acropora palmata is projected to mitigate the most extreme im-

pacts of coastal flooding by reversing projected trajectories of

reef erosion and allowing reefs to keep pace with the �0.5 m

of SLR expected by 2100.32 Coral restoration targets for Cheeca

Reef in the Florida reef tract on the other hand are not likely to

support sufficient reef accretion rates under severe future

bleaching predictions, although in this case restoration was

projected to at least delay the switch from positive to negative

carbonate budgets.33 Overall, long-term reef accretion in the

Caribbean is marginal due to low rates of carbonate production

and high rates of bioerosion. In contrast, we have shown that net

carbonate budgets in the Spermonde Archipelago are compara-

tively high, and restoration sites can recover healthy carbonate

production rates—and therefore reef accretion rates—within

only 4 years. Indeed, vertical potential accretion rates calculated

formature restoration sites are 30%higher than those for healthy

reefs due to the dominance of branching corals that typically

support higher framework accretion rates compared to mixed

assemblages.34

Vertical accretion rates inour studyaregenerally highcompared

to regional means elsewhere (mean ± SD Indian Ocean: 2.01 ±

2.33 mm yr�1; Caribbean: 1.87 ± 2.16 mm yr�1 34), although

consistent with long-term accretion rates calculated from shallow
Current Biology 34, 1341–1348, March 25, 2024 1345
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water branching- and tabular coral-dominated Indo-Pacific reef

deposits (10–20mm yr�1 35). It is important to note that calculated

rates are maximum potential accretion rates, which do not factor

for episodic physical framework removal, and that the use ofmetal

frames initially disconnects carbonate production fromvertical ac-

cretion of the actual reef surface. However, we observed that

transplanted corals grow both upward and downward, eventually

fusingwith the reef surface, and that live and dead coral fragments

accumulate and consolidate within the Reef Stars. At our study

sites it is thus reasonable to hypothesize that physical breakage

of corals by storms will initially contribute material to rapidly infill

theopensteel structures, and therebyquickly raise the reefsurface

to the topofReefStars, but subsequent framework removalwill ul-

timately lead to lower long-term accretion rates. However, even

assuming 50% of produced carbonate is lost through physical

removal, long-termaccretion rateswould still closely track regional

SLRprojectionsof8mmyr�1 under an intermediateSharedSocio-

economic Pathway (SSP) scenario (0.59 m total SLR by 2100,

SSP2-4.5), although they may not track high-emission scenario

projections (13 mm yr�1, 0.81 m by 2100 under SSP5–8.5).36 As

in-field dataon the links between restoration and vertical accretion

remain limited at best, ongoing monitoring of changes in vertical

substrate elevation at these andother siteswould be very valuable

given the relevance for coastal protection.

Restoring reefs in a warming world
Amajor challenge facing global efforts to restore coral reefs is the

ongoing increase in frequency and severity of climate-related

stressors. For example, record high sea-surface temperatures in

late 2023 led to widespread coral beaching and mortality across

the Caribbean and Eastern Tropical Pacific, initiating the reloca-

tion of thousands of nursery corals in Florida to avoid total mortal-

ity.37,38Marine heatwaves like thiswill becomecommon events in

comingdecades39 andcurrent projectionspredict high-frequency

severe bleaching by 2040–2050,40 threatening the long-term suc-

cess of reef restoration, especially when transplanting thermally

sensitive coral taxa.41 There are several ways in which coral reef

restoration might be deployed strategically in a warming world

to accompany critical reductions in carbon emissions. For

instance, restoration might be prioritized to take place in thermal

refugia areas, where transplanted corals are less likely to

encounter lethal environmental conditions in the near future.42

This approach was taken in the studied restoration program; the

west coast of South Sulawesi is a potential thermal refuge due

to regional patterns of wave-generated heat fluxes, which is ex-

pected to lead to lower bleaching risk relative to areas that expe-

rience less thermal variability.43 In line with expectations, only mi-

nor bleaching was observed in the area in 2015, despite water

temperatures exceeding 30�C.10 Other restoration projects aim

toenhance thermal resistance through ‘‘assistedevolution’’, prior-

itizing the transplantation of thermally tolerant genotypes.44 Even

without assisted evolution there is some emerging evidence that

coral thermal tolerancecan increasenaturally, suggestingadapta-

tion potential of natural and restored coral populations to future

thermal stress.45 Whether this thermal tolerance increase can

keep pace with ocean warming will depend on global action on

reducing carbon emissions.45 To maximize the success of reef

restoration in an uncertain future, species selection should there-

fore balance ecosystem value against the risk of future extinction,
1346 Current Biology 34, 1341–1348, March 25, 2024
which is most likely achieved by transplanting locally common

species of a wide range of phenotypes.46 Finally, restoration pro-

jects should aim to reduce direct anthropogenic stressors by

ensuring local stewardship, which increases awareness and pro-

vides protection for restoration sites and nearby healthy reefs

alike. As such, it is of utmost importance to carefully choose sites

suitable for reef restoration and integrate social-ecological frame-

works into restoration efforts.47,48

Conclusions
In conclusion, this study demonstrates that commonly deployed

coral reef restoration techniques (coral transplantation and sub-

strate addition) can recover net carbonate budgets and therefore

vertical reef accretion potential in short periods of time. Scaling

up reef restoration continues to be a challenge and coral resto-

ration does not negate the need for strong reductions in carbon

emissions, especially given the higher heat sensitivity of branch-

ing corals commonly used for transplantation. Nevertheless, our

findings suggest that large-scale and multidimensional reef

restoration programs offer short-term options to recover some

important ecosystem functions and thereby increase the reef’s

resilience to local (e.g., fishing) and global stressors (e.g., sea-

level rise).
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Lange (i.lange@exeter.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data and original code supporting the findings in this paper are publicly available on GitHub (https://github.com/InesLange/

reef-restoration-carbonate-budgets). Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study sites and restoration method
To date, the Mars Coral Reef Restoration Program (www.buildingcoral.com), has restored >4 ha of reef across two neighboring

islands in the Spermonde Archipelago, South Sulawesi (and >8 ha across Indonesia in total). Restoration is defined as an activity

undertaken to assist recovery of a degraded ecosystem1 and in this case involves the installation of interconnected hexagonal,

sand-coatedmetal frames termed ‘‘Reef Stars’’, to which 10–15 coral fragments are attachedwith cable ties. The transplanted corals

are harvested from nearby dedicated collection sites and represent a mixed assemblage of branching coral genera which match the

natural local reef communities (Acropora, Pocillopora, Stylophora, Isopora, Porites, Hydnophora, Montipora). Reef stars are arranged

in blocks of �50 3 20 m, which receive regular maintenance (brushing of metal frames to remove turf algae, replacement of dead
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coral fragments) in the months following transplantation. Over time, restoration sites are expected to recover the structure and func-

tions of nearby undisturbed reefs through natural coral recruitment and the provision of diverse habitats for fish and invertebrate com-

munities. The long-term funding of a dedicated restoration management team, in combination with involvement of the local island

community, is critical for the success of this project.

This study was conducted on shallow reefs (2–3 m depth) around Pulau Bontosua in September 2022 and May 2023 (Figure S1A).

To assess the recovery trajectory of restoration sites, we surveyed sites where Reef Star installation took place at different points in

time between 2018 and 2023 (space-for-time substitution), as well as degraded and healthy reference sites. No coral bleaching or

other major disturbancewas observed at the study sites in this time frame. The focus area of current restoration efforts is Salisi Besar,

which enabled us to survey three replicate sites each within areas transplanted with Reef Stars 1–3months prior to surveys in 2023 (0

years), in 2022 (1 year) and in 2021 (2 years) in close proximity to one another (Figure S1B). Reef Star installations paused in 2020 due

to COVID restrictions, so our analysis could not include restoration sites three years post-transplantation. Sites that were restored in

2018–2019 (4 years) and healthy control sites were located across awider area (max 1 kmdistance; Figure S1C), as these habitats are

not available in high enough replication on Salisi Besar. Spatial autocorrelation analysis therefore indicates a clustering of sites with

high coral cover and net carbonate budgets (Moran’s I = 0.05, p = 0.03), which however represents an artifact of site availability and

has a very weak effect compared to time since coral transplantation. The proximity of mature restoration sites to healthy reefs might

furthermore suggest that recovery at these sites could have been faster compared to recently restored sites, which however is not

supported by our data (linear increase of coral cover and carbonate production over the first two years).

METHOD DETAILS

Carbonate budgets
Reef carbonate budgets were quantified at all 18 sites using the Indo-Pacific ReefBudget methodology11 (available at https://

geography.exeter.ac.uk/reefbudget/). At each site, data was collected by the same experienced observer (IDL) along four replicate

transects (10 m long) placed within restoration sites or degraded/healthy controls. If the size of the restored area did not allow the

placement of four consecutive transects, one or two of them were placed parallel to the other transects at a minimum distance of

5 m to better represent the whole restoration site. For substrate composition, the distance (in cm) covered by each benthic group

beneath the 10 m guide transect line was measured using a separate flexible tape, following the reef contour. Recorded groups

included scleractinian corals to the genus and morphological level e.g., Acropora tabular, Porites massive etc.; crustose coralline

algae (CCA); turf algae; fleshymacroalgae; non-encrusting coralline algae (e.g.,Halimeda spp.); sediment; rubble; sponges and other

benthic organisms. Distances of benthic categories were collected as a function of the true three-dimensional surface of the reefs,

including cover on overhangs and vertical surfaces, and thus exceed linear transect length. The cumulative total reef surface was

divided by linear distance (10m) to yield rugosity, ameasure for structural complexity of the reef substrate.58 Survey data was entered

into the ReefBudget spreadsheets which use the morphology and size of individual coral colonies in combination with genera/mor-

photype-specific calcification rates to estimate total annual coral carbonate production (Coral G with G = kg CaCO3m
�2 yr�1). Cover

of CCAwasmultiplied by an average Indo-Pacific calcification rate to estimate CCA carbonate production (CCAG) andwas added to

Coral G to yield Gross Production G. Endolithic bioerosion by macroborers (e.g., sponges, polychaetes, bivalves) and microborers

(e.g., algae, fungi) were taken into account by multiplying published bioerosion rates with the available substrate along each transect

(all benthic categories except sand) to yield annual endolithic erosion (Macro G and Micro G). Sea urchin abundance and test-size

was determined in belt transects along the same transect lines (403 5m) and their contribution to erosion calculated using published

taxa- and size-specific erosion rates (Urchin G). Parrotfish abundance and size (to nearest cm) was quantified along the first transect

line (503 5 m) by two experienced observers (PBM & MEP). Bioerosion for each observed parrotfish was calculated using species-

and size-specific erosion rate data to yield site-specific annual erosion by fish (Parrotfish G). Erosion bymacro- andmicrobioeroders

was summed at transect-level, while fish and urchin erosion were factored in as site average values, to yield Gross Erosion G, which

was subtracted from Gross Production G to yield the net carbonate budget (Net G). Rates of net carbonate production at each site

were converted to maximum vertical reef accretion potential rates (RAPmax, mm yr�1, sensu34), using framework porosity values of

60% for branching dominated (mature restoration sites) and 50% for mixed assemblages (healthy reefs).

We suggest that carbonate budgets can be a useful tool for the quantification of geo-ecological functions provided by restoration

sites, offering detailed insights into total carbonate production and contributions by different coral genera. However, its application in

other restoration projects may require careful adaptation to smaller spatial scales, as only a limited number of restoration programs

match the size of the Mars Reef Restoration Project in South Sulawesi. To assess carbonate production in smaller restoration areas,

we propose measuring colony sizes within specific planar areas or on restoration modules, rather than along transect lines.

Coral growth and density
To increase the accuracy of carbonate budgets, we integrated local growth rates of coral colonies (quantified using photogrammetry

and 3D modeling59), and their skeletal densities (quantified using the Archimedes principle60). In September 2022, 60 colonies of the

genera-morphotypes arborescent Acropora, corymbose Acropora, branching Hydnophora, submassive Isopora, branching Pocillo-

pora, branching Porites, branching Stylophora and branching Seriatopora (n = 7–10/genera) were tagged and photographed in an

area on Salisi Besar that was restored one year prior (Figure 1). These genera are the most common corals used for restoration

and also dominate local healthy reef communities. Photographs were taken from multiple angles around each coral colony covering
e2 Current Biology 34, 1341–1348.e1–e3, March 25, 2024
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all aspects of the surface using a Canon Powershot G7X in an underwater housing (automatic underwater setting, no zoom, no flash)

and a foldable ruler as a size reference. Sites were re-visited in May 2023 and while some colonies were found dead (n = 13), we were

able to replicate models for 47 colonies. Additionally, a small fragment was collected from each colony for skeletal density analysis.

Using Agisoft Metashape professional (v1.8.4), 3D models were constructed, scaled and exported as .ply following the workflow

described in Lange and Perry.59 Dense point clouds of the same colony in subsequent years were then aligned in the software

CloudCompare (v2.12.4) and isolated from the surrounding reef area by cutting around the colonies’ peripheries. The alignment of

point clouds was conducted manually using the Reef Star structure as reference. After models were aligned and isolated, the

‘Compute cloud/cloud distance’ command was used to display distances between models on a scalar field. For branching morpho-

types, maximum linear extension was measured by measuring distances between branch tips (n = 10) using the ‘Point picking’ tool.

For corymbose Acropora, colonies were divided into ‘table-like’ and ‘cushion-like’ growth, as linear growth rates (and skeletal den-

sities) differed significantly (Figure S3). For submassive Isopora, average distances between colony surfaces were extracted by fitting

a Gaussian model to the scalar field. Linear growth over the 8-month study period was translated to annual extension rates by

dividing the measured distances by the number of days between surveys and multiplying by 365.

Collected coral fragments were sprayed with a water hose to remove all tissue, soaked in sodium hypochlorite solution (household

bleach) to remove remaining organic material, rinsed, and dried. Bulk density of coral fragments was acquired using the Archimedes

principle following Bucher et al..60 After obtaining the dry weight of clean coral skeleton, a thin coating of paraffin wax (Paraplast

X-TRA) was applied to each piece of coral by quickly dipping it into a pot of molten wax (in water bath at 74�C–79�C) and shaking

off the excess. Waxed skeleton fragments were allowed to cool for a fewminutes before being weighed dry and suspended in water.

The density of the fresh water in the aquarium below the scale was determined by weighing a stainless-steel cube of known density

(see Lange et al.61 for more details).

Measured growth rates and skeletal densities were integrated into ReefBudget sheets together with published growth rates from

Indonesia for other genera-morphotypes. If no local or regional data were available, averages over all Indo-Pacific data were utilized.

Colony size structure
To examine differences in the size structure of coral communities between restoration sites and healthy reefs, colony sizes of all

measured corals were extracted from the ReefBudget dataset. Abundance per transect and average colony size were calculated

for all corals. To plot size frequency distributions of different morphotypes, corals were then grouped into ‘arborescent Acropora’,

‘corymbose/tabular Acropora’, ‘other branching taxa’ (mainly Pocillopora, Stylophora, some Seriatopora, Porites, Hydnophora),

‘massive and submassive taxa’ (mainly Porites, some Goniastrea, Favites, Galaxea), ‘encrusting/plating taxa’ and ‘other morpho-

types’ (mainly free-living ). Due to the nature of ReefBudget data collection, colony sizes represent colony contour lengths, rather

than planar colony area or diameter used in other studies,62–64 and depict lengths of continuous live coral tissue cover (as in61,65)

and not estimates of total colony size connected by a shared skeleton (as in64) or maximum size of coral colonies. A total of 2,611

colony sizes were recorded across all morphotypes and sites.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted in R version 4.3.149 using packages vegan,50 and tidyverse.51 As sites with different histories

of restoration were surveyed at the same time instead of repeatedly visiting the same sites, all datapoints are independent (n = 6

groups, n = 3 sites per group, n = 4 transects per site). Transect-level coral cover, rugosity, Gross Production G, Gross Erosion G

and Net G, as well as genera diversity, total coral colony abundance andmean colony size were compared among degraded, healthy

and restored sites of different years using linear mixed effects models (package lme452) with restoration status as fixed factor and site

as random factor (total sample size n = 72, results in Table S1; Figures S1 and S2). Results of Tukey posthoc tests (package em-

means53) are depicted in Figures 2, S1 and S2 (different letters signify statistical differences at p < 0.5). Spatial autocorrelation of coral

cover and net carbonate budgets was tested using Moran’s I (package ape54).

Differences in genera contribution to Coral G were explored via principal component analysis (PCA) using packages FactoMineR55

and factoextra56 and differences between groups were tested via Permutational Multivariate Analysis of Variance (PERMANOVA) in

packages vegan and pairwiseAdonis.57 Group dispersion was tested via Permutational Multivariate Analysis of Dispersion

(PERMDISP: F5,55 = 2.0, p > 0.05), and the non-significant result indicates that PERMANOVA pairwise differences between sites

are entirely due to differences between groups.
Current Biology 34, 1341–1348.e1–e3, March 25, 2024 e3
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